
A b s t r a c t. Equilibrium moisture content data for long grain

rough rice (Oryza Sativa, cv. Binam) were obtained by equilibra-

ting rough rice samples at different equilibrium relative humidity

(ERH) and temperatures. Although conventional mathematical

models are able to predict EMC with high accuracy, such models

can be competed and replaced with artificial neural networks

(ANNs) method which is a simple mathematical model of human

brain performance. Modified models of Chung-Pfost, Halsey,

Henderson, Oswin as well as GAB were used as mathematical

models to fit the data. One of the multi layer perceptron (MLP)

neural network types, called Feed Forward Back Propagation

(FFBP), was used in this work. Training algorithm of Levenberg-

Marquardt (LM) was also applied. The range of temperature was

0-35 with 5°C intervals and relative humidity was 19.75-94.21%.

The best results for mathematical model belonged to the Chung-

Pfost model with average R2 = 0.9861 and mean relative error =

4.76%, and the best one for FFBP neural network with training

algorithm of LM was appertained to the topology of 2-4-3-1 and

threshold functions order of TANSIG-TANSIG-PURELIN. By the

use of this optimized network, R2 = 0.9958 and mean relative error

= 3.56% were determined. These results show that mathematical

models can be replaced with the ANNs for the prediction of EMC in

the Binam variety of rough rice.
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INTRODUCTION

Rice is one of the most important foods for the majority

of the people in the world. Manual control of rice processing

systems can decrease the ultimate quality of rice, thus

intelligent control of processing systems can prevent it.

Some investigations on the moisture content changes of

stored rice with air temperature at the duration of aeration

have been carried out for different cultivars using models

with three or more coefficients represented (Jindal and

Siebenmorgen, 1994).

Rough rice has a hygroscopic nature and ventilation of

a bin to reduce rough rice temperature can cause rough rice

to gain or lose moisture, depending on the rough rice-air

interactions that take place. An equation that relates the

equilibrium relative humidity (ERH) to the grain equili-

brium moisture content (EMC) is needed to optimise the

grain quality. Rice is a very delicate cereal and difficult to

manage. Because it is consumed as whole kernel, the

formation of fissures and cracking provoked through

ventilating with high air relative humidity negatively affects

its final quality (Siebenmorgen et al., 1998). Several investi-

gators have studied the sorption model of cereals (Chen and

Jayas, 1998; Sokhansanj and Yang, 1996). Many resear-

chers investigated the relation of EMC changes of stored rice

with air temperature, air flow rate during aeration, and

variety (Khankari et al., 1994).

Equilibrium moisture content of some foods and agri-

cultural products has been investigated by many resear-

chers: sugar beet root (Iglesias et al., 1975), potato slices

(Mazza, 1982), rough rice (Aguerre et al., 1983), shelled

maize (whole, dehulled and hulls) (Tolaba and Suarez, 1990),

mustard seeds (Mazza et al., 1994), extruded rice-legume

snacks (Chauhan and Bains, 1990), starch gels (McMinn et

al., 2004), almond (Pahlevanzadeh and Yazdani, 2005),

mushroom (Lee and Lee, 2008) and olive leaves (Bahloul et

al., 2008). Artificial neural networks have been used in some

industrial applications such as: performance prediction of an

industrial paper dryer (Huang and Mujumdar, 1995), pre-

dictive control of a drying process (Jay and Oliver, 1996),

modelling the moisture content of thin layer corn during

drying process (Trelea et al., 1997), air heater plant for a dryer

(Thyagurajan et al., 1997) and sorption isotherm of black tea

(Pancharyia et al., 2002).
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The relationship between EMC and ERH is of a crucial

importance in heat and mass balances. Its knowledge per-

mits the optimisation of the energetic efficiency of drying

installations and of product quality during storage ventila-

tion, which represents an important step forward for the rice

industry. Equilibrium moisture characteristics have a very

important role in post harvest stages. Many researchers have

worked on equilibrium moisture content of foods and agri-

cultural products. The most common method for estimation

of equilibrium moisture content is mathematical models.

Application of models which are fitted to experimental data

involves many difficulties, such as the generation of nume-

rous equations, reduction of computation velocity and re-

duction of accuracy of processing control systems. Precise

prediction of EMC can not only decrease the storage losses

of rough rice, but it may also affect the processing systems.

Determining a mathematical model or ANNs, and program-

ming it into a control system, would make it possible to

predict the EMC irrespective of whether aeration causes the

drying or wetting of the mass of rice at a safe level.

Mathematical models with three or more coefficients

would fit the empirical data better, but the use of an addi-

tional coefficient must introduce significance in improving

the goodness of fit. Relationship between EMC and ERH

varies among rice cultivars. No data regarding adsorption

were found for the Binam rice cultivar.

The propose of the present work was to:

– study at temperatures simulating the local climatic condi-

tions of the Guilan province (Iran) by mathematical models,

– create a relation between equilibrium moisture content,

equilibrium relative humidity and ambient temperature

using an artificial neural networks,

– compare the results of the two methods.

MATERIAL AND METHODS

The long grain rough rice of Binam cultivar (average

length of 7 mm) was supplied by a rice processing factory in

Astane city, Guilan province, Iran, after first drying in a dry-

ing bin (August, 2006). According to the local synoptic sta-

tion, the average monthly maximum temperature and relati-

ve humidity of this region were 29°C and 95%, respectively.

The average moisture content of rough rice, based on ran-

dom bulk sampling, was about 17±1% (d.b.) (Zomorodian,

2001). The adsorption isotherms were determined by the

static method with different sulphuric acid solutions (Merk,

Germany) to achieve the internal ERH in jars (Iglesias and

Chirife, 1982; Molnar, 1995). A sulphuric acid volume of

125 ml was introduced into jars, with concentrations varying

between 10 to 58% (w/w). ERH or water activity (aw) for

every temperature was determined using the Molnar equa-

tion (Molnar, 1995). Rice samples were dried in a laboratory

dryer (made at the Department of Agricultural Machinery

Engineering, Bu-Ali Sina University, Hamedan, Iran) at

70°C and pressure less than 100 mm Hg (AOAC, 1990),

then 2-3 g of dried rice were introduced in a small basket and

suspended from the jar lid above the solutions. The jars were

placed in temperature control apparatus (Lutron TM-915,

Taiwan) from 0 to 35 at 5°C intervals. Nine points were ob-

tained to determine the adsorption isotherm. Each experi-

ment was done in three replications. The time needed for the

samples to reach equilibrium varied from 2 to 8 weeks,

depending on the temperature of the experiment. Moisture

content of samples was determined by using the gravimetric

method with a balance type GF-600 (± 0.001), AND, Japan.

Five most common physical models for deriving EMC

of agricultural products are modified models of Chung-

Pfost, Halsey, Henderson, Oswin as well as GAB. These

models have been proposed and tested for the dependence

between EMC and water activity (Garcia-Alvarado et al.,

1995; San Martin et al., 2001; Sanny et al., 1997). The

formula of each model is as follows:
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(Modified Oswin),

where: aw is water activity, EMC is equilibrium moisture

content (% d.b.), T is absolute temperature (K), R is univer-

sal gas constant (8.314 J mol
-1

K
-1

), A, B, and C are constants

for different materials that were calculated by experimental

method. Supremacy of each model for prediction of EMC

was expressed by two indices of coefficient of determination

(R
2
) and mean relative error (Emr). The fit was performed by

non-linear regression based on minimization of the square

sum by means of the software Statgraphics plus 4.1.

An artificial neural network consists of neurons which

have been related together with special arrangement.

Neurons are in layers and every network consists of some
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neurons in input layer, one or more neurons in output layer,

and neurons in one or more hidden layers. The learning

purpose in artificial neural networks is weights updating, so

that with presenting set of inputs, desired outputs are ob-

tained. The most common type of artificial neural networks

is Feed Forward Back Propagation (FFBP) (Jam and Fanelli,

2000). Each network is trained with presented patterns.

During this process, the connection weights between layers

are changed until the differences between predicted values

and the target (experimental) are reduced to reach per-

missible limit (Heristev, 1998). An epoch is the number of

sets of training data presented to the network (learning

cycles) between weight updates. It is useful to set an epoch,

since certain instruments (such as RMS error graph) update

their calculations at the end of an epoch.

FFBP network consists of one input layer, one or several

hidden layers and one output layer. For learning this net-

work, a back propagation (BP) learning algorithm is usually

used. In the case of BP algorithm, first output layer weights

are updated. A desired value exists for each neuron of output

layer. By this value and learning rules, the weight coefficient

is updated.

The Levenberg-Marquardt (LM) training algorithm was

used for updating network weights. The LM algorithm is Hes-

sian-based and allows the network to learn features of a com-

plicated mapping more easily. The training process conver-

ges quickly as the solution is approached, because the Hes-

sian does not vanish at the solution (Demuth and Beale, 2003).

Considering two inputs in all experiments, the EMC

value was derived for different conditions. The equilibrium

relative humidity (ERH) and environmental air temperature

affect the Equilibrium Moisture Content (EMC) of rice, so

EMC=f (ERH, T), therefore, networks with two neurons in

the input layer (ERH or water activity and temperature) and

one neuron in the output layer (EMC) were designed.

Boundaries and levels of input parameters are shown in

Table 1. Neural network toolbox (ver. 4.1) of MATLAB soft-

ware (Mathworks Co., USA) was used in this research project.

For obtaining the desired answer, an FFBP network was

utilised. During training of this network, calculations were

done from input of network toward output, and then values

of error propagated to prior layers. Output calculations were

done layer to layer and output of each layer was the input of

next layer. Various threshold functions were used to obtain

the optimized status (Demuth and Beale, 2003): LOGSIG,

TANSIG and PURELIN.

About 75% of all data were randomly selected for trai-

ning network with suitable topology and training algorithm.

The following criterion of root mean square error was defi-

ned to minimise the training error:
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where: MSE is mean square error, Sip is network output in

i-th neuron and p-th pattern, Tip is target output at i-th neuron
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follows:
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where: R
2

is coefficient of determination, Emr is mean rela-

tive error, Sk is network output for k-th pattern, Tk is target out-

put for k-th pattern and n is the number of training patterns.

For increasing the accuracy and processing velocity of

network, input data were normalized at boundary of [0, 1].

RESULTS AND DISCUSSION

Results of five mathematical models are shown in Table 2.

Coefficients and indices show that two models – modified

Chung-Pfost and modified Henderson – gave the best

results, because these models presented the best values of

MSE, R
2
, and Emr. On the other hand, the modified Chung-

Pfost and modified Henderson equations better fitted the

experimental data including the temperature effect. Modi-

fied Oswin and modified Halsey models gave the lowest R
2

and the highest Emr so they were incapable of explaining the

variability of the data. The modified Chung-Pfost presented

the best results, because its R
2

and Emr were the best values

(0.9861 and 4.76, respectively). The GAB equation showed

a high error value. In addition, the parameter A which repre-

sents the mono-layer moisture content was considerably hig-

her than the data reported in the literature (Chen and Jayas,

1998) and indicated disability of this model to fit the data.

Increase in temperature produces a decrease in EMC of

rice (Fig. 1). ERH at 0.6 and 0.8 determined a 5.55% EMC

variation at 15 °C. For a constant ERH line, the variation of

EMC was 1.13% at the studied temperature range. More-

over, the distance between constant ERH lines was not pro-

portional, indicating that the higher the ERH, the higher the

water retention capacity of rice. The risk area, where moulds

develop due to the high ERH, starts at about 80% which is

the growth limit for the majority of moulds (Caurie, 2007),
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Parameters Minimum Maximum No. levels

Air temperature (°C) 0 35 8

Relative humidity (%) 0.1975 94.21 9

T a b l e  1. Input parameters for ANNs and their boundaries
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Parameter
Modified

Chung-Pfost

Modified

Henderson GAB
Modified

Halsey

Modified

Oswin

A 4313.25 0.0001 0.1075 -5.13 0.1125

B 14.75 1.30 0.3244 exp (466.61/(273+T) 0.00158 -0.0000857

C -80.92 118.56 0.7449 2.164 2.48

Emr (%) 4.76 4.97 9.62 11.73 8.73

R2 0.9861 0.9852 0.9820 0.9380 0.9611

T a b l e  2. Coefficients of the models used to fit the experimental data and the analytical indices
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which coincides with a 16% EMC. In general terms, to

achieve good storage, the grain mass should have moisture

content lower than 16% (d.b.) at a temperature lower than

10°C (Aguerre et al., 1983; Siebenmorgen et al., 1998). For

instance, air at 5°C and 72% RH would equilibrate the

Binam rice at 14% EMC. By introducing the model into a com-

puterized heat and mass transfer balance, it would be pos-

sible to refrigerate a silo of rice automatically under safe

conditions with non-conditioned air. Zomordian (2001) pre-

dicted EMC of three Iranian rice cultivars (champa, domsiah

and salari) using empirical models. The best results were de-

rived when the Henderson model was used, because the

highest value of R
2

and the lowest value of error were de-

rived by this model.

The FFBP neural network was used to create a relation

between input and output of patterns. For investigation of

the effect of different threshold functions on network

optimisation, two strategies including similar and various

threshold functions for all layers were used (Table 3). Both

strategies were used for FFBP network with LM learning

algorithm. The best results of using network and algorithm

for first and second strategies are shown in Table 3.

Three and four layers FFBP neural networks were used

for the prediction of EMC. The best result for three layers net-

work and first strategy with TANSIG threshold function was

2-4-1 topology. This topology produces MSE=0.0000287,

R
2
= 0.9895 and Emr = 5.96%. The best for LOGSIG thres-

hold function was for 2-5-1, that produces MSE=0.0000226,

R
2
=0.9903 and Emr=5.50%. Thus, the application of LOGSIG

for first strategy gives the best result for three-layer network.

The best result for four-layer network and first strategy with

TANSIG threshold function was for 2-4-4-1 which produces

MSE=0.0000235, R
2
=0.9886 and Emr= 6.07%. In this case,

for LOGSIG threshold function, 2-4-3-1 threshold function

had MSE=0.0000180, R
2
=0.993 and Emr=4.08%.

In the case of the first strategy, four-layer network with

2-4-3-1 topology produced the best values of MSE, R
2

and

Emr. The second strategy, with threshold function order of

TANSIG-TANSIG-PURELIN for four layers and 2-4-3-1

topology, produced MSE=0.0000153, R
2
=0.9958 and Emr =

3.56. Comparison of the first and second results showed that

the second strategy was better than the first one. Figure 2

shows a good fit between the experimental and predicted

data values for the second strategy result. Training and

testing process of patterns proved that the distribution and

selection of training and data sets was done in a suitable way,

because the values of two data sets had little difference in all

training processes (Fig. 3). Comparison between prediction

and experimental values of testing data set shows the optimi-

zed ANN that produced a low real error (Fig. 4). These results

also show that the overtraining phenomenon has not occurred.
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Threshold function
No. layers and

neurons MSE R2 Emr (%)
Epoch*

TANSIG

LOGSIG

TANSIG

LOGSIG

TANSIG- TANSIG- PURELIN

2-4-1

2-5-1

2-4-4-1

2-4-3-1

2-4-3-1

0.0000287

0.0000226

0.0000235

0.0000180

0.0000153

0.9895

0.9903

0.9886

0.9930

0.9958

5.96

5.50

6.07

4.08

3.56

30

25

41

20

53

*Number of training cycles.

T a b l e  3. Best results of applied topologies and threshold functions for FFBP network and LM algorithm
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Fig. 2. Predicted values and real errors of optimized ANN for

evaluation data.

Fig. 3. Mean square error of training and testing patterns for the

best ANN.



Comparison of the best result of mathematical model

which is related to modified Chung-Pfost and the best result

of ANN which is related to FFBP network, LM algorithm,

2-4-3-1 topology and second strategy with TANSIG-

TANSIG-PURELIN showed that the ANN approach was

more suitable, since its value of (0.9958) was higher than

that of the Chung-Pfost model (0.9861) and its value of Emr

(3.56) was lower than the Chung-Pfost model (4.76) (Fig. 5).

Chen and Jayas (1998) recommended that models producing

Emr lower than 5 are better to be considered as a good fit.

Results of the ANNs and mathematical methods have this

criterion, but the ANN method presented a unique model

and the mathematical method presented eight models, so

and is the average of those models.

CONCLUSIONS

1. The results showed that the EMC of rough rice could

be predicted by ANNs, with lower mean relative error and

higher coefficient of determination compared to the mathe-

matical models.

2. The best result for mathematical model belonged to

the modified Chung-Pfost model, with R
2
=0.9861 and Emr

=4.76.

3. The best ANNs for data training was FFBP with LM

algorithm and TANSIG-TANSIG-PURELIN threshold

functions for layers, four neurons for the first hidden layer

and three neurons for the second hidden layer.
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